文章

Linux_IO多路复用

Linux_IO多路复用

该文介绍Linux的IO多路复用。

Linux_IO多路复用

1. IO分类

1.1. 阻塞IO

阻塞 I/O,是指进程发起调用后,会被挂起(阻塞),直到收到数据再返回。如果调用一直不返回,进程就会一直被挂起。因此,当使用阻塞 I/O 时,需要使用多线程来处理多个文件描述符。

缺点:多线程切换有一定的开销,因此引入非阻塞 I/O。

1.2. 非阻塞IO

非阻塞 I/O 不会将进程挂起,调用时会立即返回成功或错误,因此可以在一个线程里轮询多个文件描述符是否就绪。

缺点:每次发起系统调用,只能检查一个文件描述符是否就绪。当文件描述符很多时,系统调用的成本很高。

2. IO多路复用

I/O 多路复用,可以通过一次系统调用,检查多个文件描述符的状态

I/O 多路复用相当于将遍历所有文件描述符、通过非阻塞 I/O 查看其是否就绪的过程从用户线程移到了内核中,由内核来负责轮询。

进程可以通过 selectpollepoll 发起 I/O 多路复用的系统调用,这些系统调用都是同步阻塞的:如果传入的多个文件描述符中,有描述符就绪,则返回就绪的描述符;否则如果所有文件描述符都未就绪,就阻塞调用进程,直到某个描述符就绪,或者阻塞时长超过设置的 timeout 后,再返回

I/O 多路复用内部使用非阻塞 I/O 检查每个描述符的就绪状态。

3. select

3.1. 函数

1
2
3
4
5
6
7
8
9
10
#include <sys/select.h>
int select(int nfds,
            fd_set *restrict readfds,
            fd_set *restrict writefds,
            fd_set *restrict errorfds,
            struct timeval *restrict timeout);
int FD_ZERO(int fd, fd_set *fdset);  // 将 fd_set 所有位置 0
int FD_CLR(int fd, fd_set *fdset);   // 将 fd_set 某一位置 0
int FD_SET(int fd, fd_set *fd_set);  // 将 fd_set 某一位置 1
int FD_ISSET(int fd, fd_set *fdset); // 检测 fd_set 某一位是否为 1

3.1.1. fd_set

参数中的 fd_set 类型表示文件描述符的集合。

由于文件描述符 fd 是一个从 0 开始的无符号整数,所以可以使用 fd_set二进制每一位来表示一个文件描述符。某一位为 1,表示对应的文件描述符已就绪。比如比如设 fd_set 长度为 1 字节,则一个 fd_set 变量最大可以表示 8 个文件描述符。当 select 返回 fd_set = 00010011 时,表示文件描述符 125 已经就绪。

3.2. 流程

  1. 用户线程调用select,将fd_set从用户空间拷贝到内核空间
  2. 内核在内核空间对fd_set遍历一遍,检查是否有就绪的socket描述符,如果没有的话,就会进入休眠,直到有就绪的socket描述符
  3. 内核返回select的结果给用户线程,即就绪的文件描述符数量
  4. 用户拿到就绪文件描述符数量后,再次对fd_set进行遍历,找出就绪的文件描述符
  5. 用户线程对就绪的文件描述符进行读写操作

3.3. 优点

  1. 所有平台都支持,良好的跨平台性

3.4. 缺点

  1. 性能开销大
    1. 调用 select 时会陷入内核,这时需要将参数中的 fd_set 从用户空间拷贝到内核空间
    2. 内核需要遍历传递进来的所有 fd_set 的每一位,不管它们是否就绪
  2. 同时能够监听的文件描述符数量太少。受限于 sizeof(fd_set) 的大小,在编译内核时就确定了且无法更改。一般是 1024,不同的操作系统不相同

4. poll

pollselect 几乎没有区别。poll 在用户态通过数组方式传递文件描述符,在内核会转为链表方式存储,没有最大数量的限制

4.1. 函数

1
2
3
4
5
6
7
8
9
/* Data structure describing a polling request.  */
struct pollfd
{
    int       fd;      /* File descriptor to poll.  */
    short int events;  /* Types of events poller cares about.  */
    short int revents; /* Types of events that actually occurred.  */
};

int poll(struct pollfd *fds, nfds_t nfds, int timeout);

4.2. 流程

  1. 用户线程调用 poll 系统调用,并将文件描述符链表拷贝到内核空间
  2. 内核对文件描述符遍历一遍,如果没有就绪的描述符,则内核开始休眠,直到有就绪的文件描述符
  3. 返回给用户线程就绪的文件描述符数量
  4. 用户线程再遍历一次文件描述符链表,找出就绪的文件描述符
  5. 用户线程对就绪的文件描述符进行读写操作

5. epoll

epoll 是对 selectpoll 的改进,避免了“性能开销大”和“文件描述符数量少”两个缺点。

  • 使用红黑树存储文件描述符集合
  • 使用队列存储就绪的文件描述符
  • 每个文件描述符只需在添加时传入一次;通过事件更改文件描述符状态

selectpoll 模型都只使用一个函数,而 epoll 模型使用三个函数:epoll_createepoll_ctlepoll_wait

5.1. 函数

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
#include <sys/epoll.h>

// 每一个epoll对象都有一个独立的eventpoll结构体
// 红黑树用于存放通过epoll_ctl方法向epoll对象中添加进来的事件
// epoll_wait检查是否有事件发生时,只需要检查eventpoll对象中的rdlist双链表中是否有epitem元素即可
struct eventpoll {
    ...
    /*红黑树的根节点,这颗树存储着所有添加到epoll中的需要监控的事件*/
    struct rb_root  rbr;
    /*双链表存储所有就绪的文件描述符*/
    struct list_head rdlist;
    ...
};

// API
int epoll_create(int size);                                                         // 内核中间加一个 eventpoll 对象,把所有需要监听的 socket 都放到 eventpoll 对象中
int epoll_ctl(int epfd, int op, int fd, struct epoll_event *event);                 // epoll_ctl 负责把 socket 增加、删除、修改到内核红黑树
int epoll_wait(int epfd, struct epoll_event * events, int maxevents, int timeout);  // epoll_wait 检测双链表中是否有就绪的文件描述符,如果有,则返回

5.1.1. epoll_create

epoll_create 会创建一个 epoll 实例,同时返回一个引用该实例的文件描述符。

返回的文件描述符仅仅指向对应的 epoll 实例,并不表示真实的磁盘文件节点。其他 API 如 epoll_ctlepoll_wait 会使用这个文件描述符来操作相应的 epoll 实例。

当创建好 epoll 句柄后,它会占用一个 fd 值,在 linux 下查看 /proc/进程id/fd/,就能够看到这个 fd。所以在使用完 epoll 后,必须调用 close(epfd) 关闭对应的文件描述符,否则可能导致 fd 被耗尽。当指向同一个 epoll 实例的所有文件描述符都被关闭后,操作系统会销毁这个 epoll 实例。

epoll 实例内部存储:

  • 监听列表:所有要监听的文件描述符,使用红黑树
  • 就绪列表:所有就绪的文件描述符,使用链表

5.1.2. epoll_ctl

epoll_ctl 会监听文件描述符 fd 上发生的 event 事件。

参数说明:

  • epfdepoll_create 返回的文件描述符,指向一个 epoll 实例
  • fd 表示要监听的目标文件描述符
  • event 表示要监听的事件(可读、可写、发送错误…)
  • op 表示要对 fd 执行的操作,有以下几种:
    • EPOLL_CTL_ADD:为 fd 添加一个监听事件 event
    • EPOLL_CTL_MOD:更改与 fd 相关的事件(event 是一个结构体变量,这相当于变量 event 本身没变,但是更改了其内部字段的值)
    • EPOLL_CTL_DEL:删除 fd 的所有监听事件,这种情况下 event 参数没用

返回值 0 或 -1,表示上述操作成功与否。

epoll_ctl 会将文件描述符 fd 添加到 epoll 实例的监听列表里,同时为 fd 设置一个回调函数,并监听事件 event。当 fd 上发生相应事件时,会调用回调函数,将 fd 添加到 epoll 实例的就绪队列上。

5.1.3. epoll_wait

这是 epoll 模型的主要函数,功能相当于 select

参数说明:

  • epfdepoll_create 返回的文件描述符,指向一个 epoll 实例
  • events 是一个数组,保存就绪状态的文件描述符,其空间由调用者负责申请
  • maxevents 指定 events 的大小
  • timeout 类似于 select 中的 timeout。如果没有文件描述符就绪,即就绪队列为空,则 epoll_wait 会阻塞 timeout 毫秒。如果 timeout 设为 -1,则 epoll_wait 会一直阻塞,直到有文件描述符就绪;如果 timeout 设为 0,则 epoll_wait 会立即返回

返回值表示 events 中存储的就绪描述符个数,最大不超过 maxevents

5.2. 流程

img

6. 总结

6.1. 水平触发、边缘触发

select 只支持水平触发,epoll 支持水平触发和边缘触发。

  • 水平触发(LT,Level Trigger):当文件描述符就绪时,会触发通知,如果用户程序没有一次性把数据读/写完,下次还会发出可读/可写信号进行通知。

  • 边缘触发(ET,Edge Trigger):仅当描述符从未就绪变为就绪时,通知一次,之后不会再通知。

区别:边缘触发效率更高,减少了事件被重复触发的次数,函数不会返回大量用户程序可能不需要的文件描述符。

水平触发、边缘触发的名称来源:数字电路当中的电位水平,高低电平切换瞬间的触发动作叫边缘触发,而处于高电平的触发动作叫做水平触发。

6.2. 区别

 selectpollepoll
底层数据结构数组存储文件描述符链表存储文件描述符红黑树存储监控的文件描述符,双链表存储就绪的文件描述符
如何从fd数据中获取就绪的fd遍历fd_set遍历链表回调
时间复杂度获得就绪的文件描述符需要遍历fd数组,O(n)获得就绪的文件描述符需要遍历fd链表,O(n)当有就绪事件时,系统注册的回调函数就会被调用,将就绪的fd放入到就绪链表中。O(1)
FD数据拷贝每次调用select,需要将fd数据从用户空间拷贝到内核空间每次调用poll,需要将fd数据从用户空间拷贝到内核空间使用内存映射(mmap),不需要从用户空间频繁拷贝fd数据到内核空间
最大连接数有限制,一般为1024无限制无限制

6.3. 场景

  • 连接数较少并且都很活跃,用 selectpoll 效率更高
  • 连接数较多并且都不很活跃,使用 epoll 效率更高

参考

[1] I/O 多路复用,select / poll / epoll 详解

本文由作者按照 CC BY 4.0 进行授权